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Structural Reliability Methods

◮ Sampling

- Monte Carlo Simulation→ accurate, but time-consuming

- Latin Hypercube, Importance Sampling, Subset Simulation

◮ Geometric approximation

- FORM and SORM

◮ Surrogate model

- Polynomial Chaos Expansion (PCE)→ our focus

- Kriging

- Artificial Neural Network (ANN)

◮ PDF derivation:

- Kernel density estimation

- Maximum entropy distribution

- Method of moments
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Surrogate Limit State Functions

◮ Accurate prediction of probability of failure is essential for

structural safety.

◮ Limit state functions can involve the use of expensive

computational models.

◮ Can benefit from “surrogate” functions that serve as

approximations for the “truth” limit state functions.

g(x)
truth

≈ ĝ(x)
surrogate

hours per a run

vs.

seconds per 10
6 runs
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Probability of Failure

Probability of failure using the truth limit state function:

Pf = P[g ≤ 0] ≈
1

N

N
∑

i=1

I [g(x (i)) ≤ 0]

Probability of failure using a surrogate limit state function:

P̂f = P[ĝ ≤ 0] ≈
1

N

N
∑

i=1

I [ĝ(x (i)) ≤ 0]

Appropriate development of ĝ is needed to yield:

Pf ≈ P̂f
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Polynomial Chaos Expansion (PCE)

A limit state function can be represented by using PCE:

g(X )
PCE
≈ ĝ(X ) =

∑

α∈Nd

cα ·Ψα(T (X ))

α: multi-indicial coefficients

c : coefficients to be estimated

Ψ(.): orthogonal polynomials

T (.): iso-probabilistic transformation

◮ Any function of inputs can be represented by orthogonal

basis functions defined in auxiliary input-space.
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Formal Approach of PCE: Askey Scheme

◮ Orthogonal polynomial family is defined for the selected
independent variables for best convergence ratio.

ex) Hermite polynomials for Gaussian variables

◮ For complex random variables or dependent random
variables, an iso-probabilistic transformation is needed.

ex) Multi-modal random variables

Complex dependency structures

◮ But non-linearity of the transformation may limit PCE.
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Non-linearity in T

g(X )
truth model

of X

T
= g(Q)

truth model
of Q

≈ ĝ(Q)
PCE
of Q

- T : X → Q may be nonlinear.

- g(Q) becomes complicated.

- PCE aims to fit g(Q), not g(X )

8 / 26



Limitations of Traditional PCE

Cases that limit traditional PCE use:

◮ non-standard distributions (outside the Askey variables)

◮ dependence pattern among the input variables

For such problems, one must go beyond Askey scheme

polynomial families.
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Arbitrary Polynomial Chaos Expansion (APCE)

Recall: a limit state function represented by using PCE:

g(X )
PCE
≈ ĝ(X ) =

∑

α∈Nd

cα ·Ψα(T (X ))

α: multi-indicial coefficients

c : coefficients to be estimated

Ψ(.): orthogonal polynomials

T (.): iso-probabilistic transformation

We can use Gram-Schmidt orthogonalization to establish basis

polynomials instead of using Askey type polynomials that

involve iso-probabilistic transformations.

g(X )
APCE
≈ ĝ(X ) =

∑

α∈Nd

cα · Pα(X )
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Univariate Basis Polynomial Functions

A univariate polynomial basis function of order, p, generated by

Gram-Schmidt orthogonalization:

P
(p)
X (x) = det















m0 m1 . . . mp

m1 m2 . . . mp+1

...
...

...
...

mp−1 mp . . . m2p−1

1 x . . . xp















mk is the kth raw moment of X .

P
(p)
X (x) can be tensorized to define a multivariate orthogonal

polynomial function. But non-product type probability

measures in the dependent variables cannot be accounted for.
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Multivariate Basis Polynomial Functions

Define a multivariate polynomial basis function as:

Pα(x) =
1

∆n−1,d
· det

















m{0}+{0} · · · m{0}+{n−1} mα,0

...
. . .

...
...

m{n−1}+{0} · · · m{n−1}+{n−1} mα,n−1

(x0)T · · · (xn−1)T xα

















∆n−1,d = det







m{0}+{0} · · · m{0}+{n−1}
...

. . .
...

m{n−1}+{0} · · · m{n−1}+{n−1}






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Multivariate Basis Polynomial Functions (Cont’d)

Define a monomial, xα:

xα = xα1

1
· · · xαd

d

x
n denotes a column vector, xn ≡ [∀xα]T, such that |α| = n.

A moment matrix, m{i}+{j}:

m{i}+{j} ≡ E[xi (xj)T ]

A moment vector, mα,i :

mα,i ≡ E[xαx
i ]
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PCE Coefficient Estimation

The PCE coefficients can be estimated by linear regression:

c = arg min
c∈RNp

Ns
∑

k=1

[

g(x (k))−
∑

|α|≤p

cαPα(x
(k))

]2

Np: number of PCE coefficients

Ns : number of simulations in the truth system
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Metric for Model Evaluation

The root-mean-square error (RMSE) to assess global accuracy

of models:

RMSE =

√

√

√

√

1

NT

NT
∑

k=1

(

g (k)(x)− ĝ (k)(x)
)2

NT : total number of evaluations

The maximum absolute error (MAE) to assess local accuracy of

models:

MAE = max
k=1,··· ,NT

|g (k)(x)− ĝ (k)(x)|
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Example 1: Noisy Limit State Function

gX (x) = x1 + 2x2 + 2x3 + x4 − 5x5

− 5x6 + 0.001

6
∑

i=1

sin(100xi )

Variable Distribution Mean COV

X1 Lognormal 120 0.10
X2 Lognormal 120 0.10
X3 Lognormal 120 0.10
X4 Lognormal 120 0.10
X5 Lognormal 50 0.30
X6 Lognormal 40 0.30

MCS APCE HPCE

p = 1 p = 4

σPf
3.28 × 10

−4
3.28 × 10

−4
3.28 × 10

−4

µPf
1.23 × 10

−2
1.23 × 10

−2
1.23 × 10

−2

COV 2.68 × 10
−2

2.68 × 10
−2

2.68 × 10
−2

RMSE 2.10 × 10
−3

1.12 × 10
−1

MAE 9.10 × 10
−3

7.13 × 10
0

Ns 21 630
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Example 2: Quadratic Function

gX (x)

= 1.1 − 0.00115x1x2 + 0.00157x2

2

+ 0.00117x2

1 + 0.0135x2x3 − 0.0705x2

− 0.00534x1 − 0.0149x1x3 − 0.0611x2x4

+ 0.0717x1x4 − 0.226x3 + 0.0333x2

3

− 0.558x3x4 + 0.998x4 − 1.339x2

4

Variable Distribution Mean COV

X1 Type II Extreme 10 0.50
X2 Normal 25 0.20
X3 Normal 0.8 0.25
X4 Lognormal 0.0625 1.00

MCS APCE HPCE

p = 2 p = 10

σPf
6.89 × 10

−4
6.89 × 10

−4
6.96 × 10

−4

µPf
5.57 × 10

−2
5.57 × 10

−2
5.57 × 10

−2

COV 1.24 × 10
−2

1.24 × 10
−2

1.25 × 10
−2

RMSE 6.90 × 10
−16

1.40 × 10
−1

MAE 1.31 × 10
−14

3.88 × 10
1

Ns 45 3003
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Example 3: Correlated Non-Normal Variables

gX (x) = b − (x1 − x2)

ρX1,X2
= 0.5

Variable Distribution Mean COV

X1 Uniform 50 0.58
X2 Exponential 12.5 1
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◮ MCS is based on 1 × 10
6 truth model evaluations.

◮ APCE requires only 9 evaluations of the truth model.
◮ Traditional PCE using Hermite polynomials (HPCE) requires 900 evaluations, and

is still not satisfactory in the region where Pf < 10
−4.
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Example 3 with a Non-Gaussian Dependence Structure

A non-Gaussian dependence structure (Clayton copula with θ = 2) is investigated.

◮ APCE again shows good agreement in the prediction of the failure probabilities.
◮ HPCE clearly suffers in displaying good convergence to the truth model.
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Example 4: Dependence Structure Defined by

Rosenblatt Transformation

gX (x) = b − (x1 + x2)

X1 : lognormal and Weibull combined

X2 : lognormal conditional on X1

jpdf : fX1,X2
(x1, x2) = fX1

(x1)fX2|X1
(x2|x1)

◮ A dependence structure defined by a Rosenblatt transformation is investigated.
◮ APCE is able to deal with the complex dependence structure.
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Example 5: Multimodal Random Variables

The Ishigami function with modification in the support for the variables:

gX (x) = b − (sin x1 + 7 sin2 x2 + 0.1x4

3 sin x1)

Xi follows a mixture distribution with a pdf:

f (x) =

3
∑

i=1

wiφi (x)

wi : 1/3, φi : Gaussian pdfs with: (µ, σ) = (2.0, 0.1), (2.5, 0.5), (3.5, 0.2)
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◮ APCE predicts accurate results even when Xi exhibits multimodal characteristics.
◮ JPCE (Jacobi polynomials) clearly fails.
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Example 6: Mixed Discrete-Continuous Support

A quadratic performance function is given as:

gX (x) = b − (15 + 4x1x2 + 4x1x3 + 4x2x3

+ 3x1 + 3x2 + 3x3 − x2

1 − x2

2 − x2

3 )

Xi follows a mixture distribution with a pdf:

fX (x) = 0.7
(

1√
2π

exp(− x2

2
)
)

+ 0.3δ(x − 2.0)
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◮ APCE yields accurate results, even with the mixed discrete-continuous variables.
◮ HPCE clearly does not.

22 / 26



Example 7: Time-Domain Simulation-Based Extremes

for an Offshore System - Implicit Performance

Function

A generic offshore system performance function:

g = z − ZT (X )

z : threshold value
ZT : T -year long-term extreme response

Long-term

Short-term

Joint PDF
of environment

Integrate

X Θ ZT P[ZT > z | X ] P[ZT > z ]

fX (x)

Environmental
variables

Wave process
simulations

Response
simulations

T-year
extreme
response

Short-term
response
distribution

Long-term
response
distribution

u(t)
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Example 7: Time-Domain Simulation-Based Extremes

for an Offshore System - Implicit Performance

Function (Cont’d)

0 2 4 6 8

z (m)

10−5

10−4

10−3

10−2

10−1

100

P
[Z

T
>

z
]

MCS
APCE (p= 2)
Mean of APCE

0 2 4 6 8

z (m)

10−5

10−4

10−3

10−2

10−1

100

P
[Z

T
>

z
]

MCS
HPCE (p= 2)
Mean of HPCE

◮ To account for the the different short- and long-term uncertainty variables, we
use ten surrogates, each with a total of 600 samples.

◮ APCE with p = 2 yields comparable long-term response estimates, with

significantly less effort compared with MCS (600 : 10
6).
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Conclusions

◮ A distribution-free PCE framework for efficient structural

reliability analysis is proposed.

◮ Gram-Schmidt orthogonalization utilizes joint raw

moments of random variables to construct multivariate

polynomial basis functions.

◮ The proposed method is validated using benchmark

problems as well as an offshore design problem.

◮ Results suggest that APCE is more versatile and accurate

compared to traditional PCE (Askey scheme).
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